PrinsipKerja Teropong Bintang. 21:39 Alat Optik. Teleskop menggunakan lensa untuk memfokuskan cahaya. Prinsipnya adalah pembiasan. Cahaya yang melewati sebuah medium yang memiliki indeks bias berbeda dengan udara akan dibelokkan (tuangkan air ke dalam mangkuk tembus pandang dan sinari air dengan lampu senter yang diarahkan miring terhadap

PEMBIASAN CAHAYA Muhammad Fikri Zulfy Fardhany Jurusan Fisika, Universitas Negeri Surabaya Jl. Ketintang, Surabaya 6023, Indonesia e-mail fbule23 Abstrak Percobaan Pembiasan Cahaya ini bertujuan untuk membuktikan hukum Pembiasan Snellius, menentukan besarnya Indeks Bias bahan kaca dan pergeseran sinar, menentukan besarnya sudut deviasi penyimpangan, sudut deviasi minimum dan menentukan indeks bias prisma. Metode yang digunakan adalah menyiapkan alat dan bahan, kemudian menaruh balok kaca setengah lingkaran/kaca, plan parallel, prisma diatas kertas yang dibawahnya diberi alas berupa gabus, kemudian menggambar bentuk balok setengah lingkaran/kaca plan paralel/prisma setelah selesai digambar kemudian diberi jarum pentul yang ditancapkan pada arah sinar datang, kemudian kita lihat dari arah yang berbeda dari pengamatan terhadap hasil pembiasan sudut datang kemudian kita tancapkan jarum pentul dan digaris arah sinar hasil pembiasan tersebut. Variable yang digunakan pada percobaan ini yaitu variable manipulasi sudut datang, variable control adalah kaca yang di gunakan setiap percobaan setengah lingkaran, pklan parallel, dan prisma, variable respon adalah sudut bias r, sudut deviasi δ, indeks bias n percobaan dilakukan dengan memanioulasi 9 kali sudut datang yang berbeda pada setiap jenis kaca. Dari hasil percobaan yang telah dilakukan didapatkan nilai indeks bias pada pada percobaan kaca setengah lingkaran 1,44±0,0250 dengan ketelitian 98,27%, pada percobaan kaca plan parallel 1,47±0,020 dengan ketelitian sebesar 98,5% dan pada percobaan kaca prisma didapatkan nilai indeks bias 1,53±0,0050 dengan ketelitian 99,67% serta sudut deviasiminimum sebesar 40,6±0,050 dengan ketelitian 99,88%. Kata Kunci pembiasan cahaya, prisma, sudut deviasi, indeks bias, pergeseran sinar Abstract This Light Refraction Experiment aims to prove the Snellius Refraction law, determine the magnitude of the Refractive Index of material glass and the shift of light, determine the magnitude of the deviation angle deviation, the minimum deviation angle and determine the prism refractive index. The method used is to prepare tools and materials, then place a semicircular glass beam / glass, parallel plan, prism on the paper under which is given a base in the form of cork, then draw a semicircular beam shape / parallel plan glass / prism after completion of drawing then given a pin which is plugged in the direction of the incident ray, then we see from a different direction from observing the results of the refraction of the incident angle then we plug the pin and pin the direction of the refraction ray. The variables used in this experiment are variable manipulation angle of arrival, control variable is the glass used in each half-circle experiment, parallel plan, and prism, the response variable is the bias angle r, the deviation angle δ, the refractive index n experiments carried out by manipulating 9 times the angle of incidence that is different in each type of glass. From the results of experiments that have been conducted obtained the refractive index value in the semicircular glass experiment ± 0 with accuracy, in the parallel plan glass experiment ± 0 with an accuracy of 98 , 5% and in the prism glass experiment obtained a refractive index value ± 0 with accuracy of and minimum deviation angle of ± 0 with accuracy of Keywords refraction of light, prism, deviation angle, refractive index, ray shift I. PENDAHULUAN Latar Belakang Ketika seberkas cahaya mengenai permukaan suatu benda, maka cahaya tersebut ada yang dipantulkan dan ada yang diteruskan. Jika benda tersebut transparan seperti kaca atau air, maka sebagian cahaya yang diteruskan terlihat dibelokkan, dikenal dengan pembiasan. Cahaya yang melalui batas antar dua medium dengan kerapatan optik yang berbeda, kecepatannya akan berubah. Perubahan kecepatan cahaya akan menyebabkan cahaya mengalami pembiasan. Peristiwa pembiasan dapat kita jumpai dalam kehidupan sehari-hari seperti sebuah fenomena pelangi yang terjadi akibat pembiasan cahaya Halliday,1997. Pada percobaan ini dilakukan pengamatan terhadap kaca setengah lingkaran, kaca plan paralel, dan prisma yang dikenai oleh sebuah laser untuk membuktikan hukum pembiasan Snellius tentang pembiasan cahaya dan menentukan indeks bias. Oleh karena itu, untuk membuktikan hal tersebut maka dilakukan percobaan ini. Rumusan Masalah Berdasarkan latar belakang tersebut dapat diperoleh beberapa rumusan masalah yakni Bagaimana membuktikan hukum snellius ?Bagaimana nilai indeks bias kaca setengah lingkaran, kaca plan paralel dan prisma ?Bagaimana nilai pergeseran sinar pada kaca plan paralel ?Bagaimana nilai sudut deviasi minimum pada prisma ?Bagaimana perbandingan nilai t pada kaca plan paralel terhadap teori dan praktikum ?Bagaimana perbandingan nilai deviasi minimum pada kaca prisma terhadap teori dan praktikum? Tujuan Dari rumusan-rumusan masalah diatas dapat ditentukan tujuan dari percobaan ini yaitu untuk Dapat membuktikan hukum snelliusDapat menganalisis nilai indeks bias kaca setengah lingkaran, kaca plan paralel dan prismaDapat menganalisis nilai pergeseran sinar pada kaca plan paralelDapat menganalisis nilai sudut deviasi minimum pada prismaDapat menganalisis perbandingan nilai t pada kaca plan paralel terhadap teori dan praktikumDapat menganalisis perbandingan nilai deviasi minimum pada kaca prisma terhadap teori dan praktikum. DASAR TEORI HUKUM SNELLIUS Dalam pembiasan, berlaku hukum Snellius. Hukum Snellius adalah rumusan matematika yang memberikan hubungan antara sudut dating dan sudut bias pada cahaya atau gelombang lainnya yang melalui batas antara dua medium isotopic berbeda, seperti udara dan gelas. Hukum ini diambil dari matematika Belanda Willebrord Snellius yang merupakan salah satu penemunya. Hukum ini juga dikenal sebagai Hukum Dascartes atau Hukum Pembiasan . Pada sekitar tahun 1621, ilmuwan Belanda bernama Willebrord Snell 1591-1626 melakukan eksperimen untuk mencari hubungan antara sudut datang dengan sudut bias. Hasil eksperimen ini dikenal dengan nama Snell yang berbunyi a. Sinar datang, sinar bias dan garis normal terletak pada satu bidang datar. b. Hasil bagi sinus sudut datang dengan sinus sudut bias merupakan bilangan tetap dan disebut indeks bias Arah pembiasan cahaya dibedakan menjadi dua macam a. Mendekati garis normal Cahaya dibiaskan mendekati garis normal jika cahaya merambat dari medium optik kurang rapat kemudian optic lebih rapat. Contoh cahaya merambat dari udara kedalam air. b. Menjauhi garis normal Cahaya dibiaskan menjauhi garis normal jika cahaya merambat dari medium optic lebih rapat kemudian optic kurang rapat. Contohnya cahaya merambat dari air keudara. Sudut bias bergantung pada laju cahaya kedua media dan sudut datang. adalah sudut datang dan adalah sudut bias. dan adalah indeks bias materi tersebut. Berdasarkan hukum Snellius hubungan antara dan dapat dituliskan 1 Dari hukum Snellius dijelaskan yang berarti jika berkas memasuki medium dimana lebih besar laju lebih kecil, maka berkas cahaya dibelokkan menuju garis normal. Dan jika , maka yang berarti jika berkas memasuki medium dimana lebih kecil laju lebih besar, maka berkas cahaya dibelokkan menajuhi garis normal. Indeks bias adalah perbandingan laju cahaya di udara hampa dengan laju v pada materi tertentu. Indeks bias nilainya . Indeks bias dapat dirumuskan seperti berikut 2 keterangan n = indeks bias c = kecepatan cahaya di udara v = kecepatan materi tertentu KACA SETENGAH LINGKARAN Berdasarkan hukum snelius, didapatkan persamaan sebagai berikut n1 sin θ1 = n2 sin θ2 = konstan = n Dimana n = indeks bias bahan kaca, sin θ1 = sudut datang , sin θ2 = sudut bias KACA PLAN PARALEL Jika seberkas sinar menuju permukaan kaca plan paralel, maka sinar akan mengalami pembiasan sebanyak dua kali. Pada pembiasan pertama sinar datang dari udara ke kaca, berarti dari medium renggang ke medium rapat. Dalam hal ini sinar akan dibiaskan mendekati garis normal, sedangkan pada pembiasan kedua sinar bias berfungsi sebagai sinar datang pada bidang batas kaca dengan udara. Dalam hal ini sinar datang dari medium rapat ke mediu renggang, sehingga sinar dibiaskan menjauhi garis normal. arah sinar datang dengan sinar yang keluar dari kaca plan paralel merupakan sinar yang sejajar Keterangan t = pergeseran sinar d= tebal kaca i= sudut datang dari udara r=sudut bias di dalam kaca PRISMA Pada prisma pemantul mempunyai sudut yang paling sederhana 450-450-900. Cahaya yang memasuki secara tegak lurus salah satu sisi pendeknya mengenai sisi miring dengan sudut datang 450. Sudut ini lebih besar dari sudu kritis <450. Sehingga cahaya itu terpantul sempurna lalu keluar dari sisi pendeknya yang satu lagi setelah menyimpang arahnya ini disebut prisma porro. Sinar pada prisma mengalami dua kali pembiasan sehingga antara berkas sinar masuk ke prisma dan berkas sinar keluar dari prisma tidak sejajar Tipler, 1998. Jika sinar jatuh pada salah satu sisi prisma, maka sinar akan keluar melalui sisi lain yang ternyata mengalami pembelokan arah. Besar sudut pembelokan arah tersebut dinamakan sudut deviasi . Besarnya sudut deviasi tergantung pada sudut datangnya sinar Giancoli, 2001. δ = i1 + r2 – β Keterangan δ = sudut deviasi i1 = sudut datang pada prisma r2 = sudut bias sinar meninggalkan prisma β = sudut pembias prisma n1sin β + = n2 sin β Keterangan n1= indeks bias minimum n2= indeks buas prisma β = sudut bias prisma = sudut deviasi minimum METODE PERCOBAAN Alat dan BahanKaca setengah lingkaran 1 buahKaca plan paralel 1 buahKaca prisma 1 buahJarum pentul secukupnyaBusur 1 buahMistar 1 buahKertas Putih secukupnyaGabus 1 buahPensil 1 buahLaser 1 buah Gambar Rangkaian Percobaan KACA SETENGAH LINGKARAN KACA PLAN PARALEL PRISMA Variabel PercobaanPercobaan 1 LUPVariable Kontrol kaca setengah lingkaranVariable manipulasi sudut datang iVariable respon Sudut biasr, Indeks biasn Percobaan 2 KAMERAVariable Kontrol Kaca plan paralelVariable manipulasi Sudut datangVariable respon Sudut bias, Pergeseran t ,Indeks bias Percobaan 3 MIKROSKOPVariable Kontrol kaca prismaVariable manipulasi sudut datangVariable respon sudut bias, sudut deviasi, indeks bias Langkah percobaan KACA SETENGAH LINGKARANMembuat gambar setengah lingkaran sesuai bentuk dari lensa yang digunakanMembuat garis normal terhadap garis datar lensaMenentukan sudut i dan membuat garis sinar datangPosisikan kertas dan lensa di atas gabusMenyalakan laser dan memposisikan sinarnya tepat segaris dengan garis sinar datangMenandai posisi sinar datang dan sinar bias yang keluar dari lensa dengan bantuan jarumMemberi garis tambahan sebagai tanda jalur dari sinar terbiskan pada kertas seperti pada gambar 1Mengukur sudut bias r yang dihasilkanMelakukan percobaan dengan pengulangan agar mendapatkan data yang akurat dan benar KACA PLAN PARALELMembuat gambar blok sesuai bentuk dari lensa yang digunakanMembuat garis normal terhadap garis permukaan lensaMenentukan sudut i1 dan membuat garis sinar datangPosisikan kertas dan lensa di atas gabusMenyalakan laser dan memposisikan sinarnya tepat segaris dengan garis sinar datangMenandai posisi sinar datang dan sinar bias yang keluar dari lensa dengan bantuan jarumMemberi garis tambahan sebagai tanda jalur dari sinar terbiaskan pada kertas seperti pada gambar 2Membua garis normal kedua dari permukaan lain lensaMengukur sudut bias r1, sudut datang 2 i2, sudut bias 2 r2, dan jarak pergeseran sinar t yang dihasilkanMelakukan perobaan dengan pengulangan agar mendapatkan data yang akurat dan benar PRISMAMembuat gambar segitiga sesuai bentuk dari lensa yang digunakanMembuat garis normal terhadap salah satu garis permukaan lensaMenentukan sudut i1 dan membuat garis sinar datangPosisikan kertas dan lensa di atas gabusMenyalakan laser dan memposisikan sinarnya tepat segaris dengan garis sinar datangMenandai posisi sinar datang dan sinar bias yang keluar dari lensa dengan bantuan jarumMemberi garis tambahan sebagai tanda jalur dari sinar terbiaskan pada kertas seperti pada gambar 3Membuat garis normal kedua dari permukaan lain lensaMengukur sudut bias 1 r1, sudut datang 2 i2, dan sudut bias 2 r2 yang didapatMengukur sudut deviasi δ dan sudut prisma βMelakukan percobaan dengan pengulangan agar mendapatkan data yang akurat dan benar DATA DAN ANALISIS DataTabel KACA SETENGAH LINGKARAN NO i ± 0,50r ± 0,5 Tabel KACA PLAN PARALEL d = 3 cm i1±0,50r1±0,50i2±0,50r2±0,50t±0,005cmn23,016,016,023,00,3601,4426,018,018,026,00,4101,4329,021,021,029,00,4301,3732,022,022,032,00,5601,435,023,023,035,00,6501,4638,024,024,038,00,7801,5242,026,026,042,00,9001,5345,027,027,045,01,0001,5548,029,029,048,01,1001,54 Tabel PRISMA β = 600 i1±0,50r1±0,50i2±0,50r2±0,50δ hitungδn20,044,014,080,040391,5225,042,017,073,038401,530,039,022,071,041411,5435,034,028,067,042431,5440,030,030,061,041411,5445,028,031,056,041421,5450,025,034,050,040391,5255,024,038,047,042441,5460,022,040,039,039421,52 Analisis Data KACA SETENGAH LINGKARAN Berdasarkan percobaan yang telah dilakukan dapat diketahui dari tabel bahwa kaca setengah lingkaran memiliki indeks bias sebesar 1,44±0,0250 dengan taraf ketelitian sebesar 98,27%. Serta pada grafik dapat diketahui bahwa sudut datang mempengaruhi susut bias. Semakin besar sudut datangnya, maka semakin besar pula sudut biasnya. Dari percobaan yang telah dilakukan, nilai indeks bias juga sudah mendekati nilai yang ada pada teori. Grafik Hubungan i dengan r pada kaca setengah lingkaran Berdasarkan grafik diatas dapat disimpulkan bahwa semakin besar sudut datangnya, maka semakin besar pula sudut biasnya. KACA PLAN PARALEL Berdasarkan hasil yang didapatkan pada tabel didapatkan bahwa kaca plan paralel memiliki nilai 1,47±0,020 dengan taraf ketelitian sebesar 98,5%. Dan juga pada grafik dapat diketahui bahwa pergeseran sinar dipengaruhi oleh sudut datang. Semakin besar sudut datangnya, maka semakin jauh pula pergeseran sinarnya. Dari percobaan yang telah dilakukan juga dapat diketahui bahwa sudut datang pada kaca plan paralel berbanding lurus terhadap sudut biasnya. Ini sesuai dengan dasar teori bahwa sudut bias dipengaruhi oleh sudut datang dan medium yang digunakan. Hal ini sesuai dengan hukum snellius Grafik Hubungan i dengan t pada kaca plan paralel Berdasarkan grafik diatas dapat disimpulkan bahwa semakin besar sudut datang, maka semakin jauh pula pergeseran sinarnya. PRISMA Berdasarkan hasil yang didapatkan pada tabel didapatkan bahwa prisma memiliki nilai indeks bias sebesar 1,53±0,0050 dengan taraf ketelitian sebesar 99,67%. Prisma juga memiliki sudut deviasi minimum sebesar 40,6±0,05 0 dengan taraf ketelitian sebesar 99,88% PENUTUP Kesimpulan Berdasarkan praktikum yang telah dilakukan dapat disimpulkan bahwa ; Hukum Snellius dapat dibuktikan karena pada pembiasan cahaya perbandingan sinus sudut datang dan sinus sudut bias adalah konstan. Pada kaca setengah lingkaran didapatkan nilai indeks bias sebesar 1,44±0,025 dengan taraf ketelitian sebesar 98,27%. Pada kaca plan paralel memiliki nilai 1,47±0,02 dengan taraf ketelitian sebesar 98,5%. Pada prisma memiliki nilai indeks bias sebesar 1,53±0,005 dengan taraf ketelitian sebesar 99,67% serta sudut deviasi minimum sebesar 40,6±0,05 dengan taraf ketelitian sebesar 99,88%. Perbandingan nilai t hitung dan ukur pada kaca plan paralel 11 dan perbandingan sudut deviasi minimum hitung dan ukur pada prisma adalah 0,981. Saran Pada saat melakukan percobaan pembiasan cahaya ini, sebaiknya praktikan teliti dalam pengambilan data. Dan praktikan sebaiknya paham dengan materi pembiasan cahaya sebelum dilakukan percobaan. Dan salah satu anggota praktikan harus ada yang memiliki penglihatan yang baik agar pengambilan datanya akurat. DAFTAR PUSTAKA Halliday, Fisika untuk Universitas Jilid 2. Jakarta Erlangga. Tripler, Paul A. 2001. Fisika untuk Sains dan Teknik. Jakarta Erlangga. Giancoli, douglas C. 2001. Fisika Universitas edisi 5 Jilid 2 Terjemahan. Jakarta Erlangga. Tim Dosen Pembina Praktikum. 2020. Panduan Praktikum Fisika Dasar II edisi revisi. SurabayaUNIPRESS Navigasi pos
FENOMENAOPTIK METEOROLOGI. Dasar dari segala fenomena optik adalah teori geometri sinar. Menurut Stull (2000), pada saat cahaya monokromatik mencapai bidang pertemuan antara dua media berbeda seperti udara dan air, maka ada bagian cahaya yang dipantulkan kembali (reflection), ada bagian yang dibiaskan (refraction), ada pula bagian yang diserap dan diubah

FisikaOptik Kelas 8 SMPCahayaSifat-Sifat CahayaPernyataan yang benar mengenai arah pembiasan sinar pada prisma dari gambar di bawah ini adalah.... A. A sudut datang, C sudut bias B. A sudut datang, E sudut bias C. C sudut datang, D sudut bias D. B sudut datang, D sudut biasSifat-Sifat CahayaCahayaOptikFisikaRekomendasi video solusi lainnya0051Berkas sinar-sinar yang datang dari satu titik disebut be...0049Sebuah prisma memiliki sudut pembias 10 terbuat dari kaca...0408Sebuah prisma optik mempunyai indeks bias 1,8. Sinar data...0222Jika seberkas sinar datang dari medium kurang rapat menuj...

Thepembiasan cahaya adalah fenomena optik yang berlaku apabila cahaya menyerang secara terang-terangan pada permukaan pemisahan dua media dengan indeks bias yang berlainan. Apabila ini berlaku, cahaya mengubah arah dan kelajuannya. Refraksi berlaku, contohnya, apabila cahaya berpindah dari udara ke air, kerana air mempunyai indeks biasan yang lebih rendah. Telah dilakukan percobaan spektrometer dengan tujuan untuk mempelajari teori spektrometer prisma dengan pendekatan eksperimental, mengamati spektrum warna cahaya dari panjang gelombang tertentu, menentukan indeks bias prisma kaca, dan menentukan panjang gelombang dengan menggunakan prisma yang telah dikalibrasi. Percobaan ini dilakukan dengan cara mengamati spektrum warna lampu gas melalui teleskop, kemudian diukur besar sudut pelurus kolimator. Dari percobaan yang telah dilakukan, secara fisis telah terjadi penguraian cahaya polikromatik menjadi cahaya-cahaya monokromatik oleh prisma. Kesimpulan dari praktikum ini yaitu cahaya polikromatik dapat diuraikan menjadi cahaya-cahaya monokromatik karena dibiaskan oleh prisma. Dari semua spektrum warna yang diperoleh, panjang gelombang paling besar dimiliki oleh cahaya merah dan paling pendek dimiliki oleh cahaya ungu. Dari percobaan menggunakan lampu gas neon diperoleh indeks bias prisma sebesar 1,427 sedangkan menggunakan lampu gas helium diperoleh indeks bias prisma sebesar 1,4094. Panjang gelombang cahaya dari percobaan menggunakan lampu gas neon yaitu cahaya merah 665,793; kuning 596,555; hijau 533,324; dan ungu 452,044. Pada percobaan dengan lampu gas helium, didapat panjang gelombang merah 733,476; kuning 609,025, hijau 512,151; biru 481,414; dan ungu 429,094. Prismaadalah zat bening yang dibatasi oleh dua bidang datar. Apabila seberkas sinar datang pada salah satu bidang prisma yang kemudian disebut sebagai bidang pembias I, akan dibiaskan mendekati garis normal. Sampai pada bidang pembias II, berkas sinar tersebut akan dibiaskan menjauhi garis normal. Pada bidang pembias I, sinar dibiaskan mendekati garis normal, sebab

Dalam artikel sebelumnya, telah dibahas mengenai konsep pembiasan cahaya pada kaca plan paralel. Kaca plan paralel adalah benda bening berupa sekeping kaca yang kedua sisi panjangnya dibuat sejajar. Nah pada kesempatan kita akan membahas peristiwa pembiasan cahaya pada benda bening lainnya, yaitu prisma. Lalu tahukah kalian apa itu prisma? Bagaimana lukisan jalannya sinar datang dan sinar bias ketika melewati prisma? Apakah sama dengan kaca plan paralel? Untuk menjawab pertanyaan tersebut, simak penjelasan berikut ini. Prisma adalah benda yang terbuat dari gelas tembus cahaya transparan yang kedua sisinya dibatasi bidang permukaan yang membentuk sudut tertentu satu sama lain. Karena membentuk sudut tertentu, maka dua bidang pembatas tersebut saling berpotongan tidak sejajar. Dengan demikian, Prisma merupakan kebalikan dari kaca plan pararel. Kalau kaca plan paralel dua bidang pembatasnya sejajar sedangkan pada prisma dua bidang pembatasnya tidak sejajar. Sudut yang dibentuk oleh dua permukaan prisma yang saling berpotongan tersebut dinamakan sudut pembias yang disimbolkan dengan β baca beta. Bidang permukaan prisma berfungsi sebagai bidang pembias. Coba kalian perhatikan lukisan jalannya sinar yang melewati sebuah prisma pada gambar berikut. Seberkas cahaya datang dari udara menuju bidang permukaan prisma akan dibiaskan mendekati garis normal. Kemudian, ketika cahaya meninggalkan prisma menuju udara, cahaya tersebut akan dibiaskan menjauhi garis normal. Setelah melewati bidang prisma, cahaya tersebut mengalami deviasi penyimpangan. Besarnya penyimpangan tersebut dinyatakan dalam sudut deviasi yang disimbolkan dengan δ baca delta. Besarnya sudut deviasi yang dialami cahaya dapat ditentukan dengan cara berikut. Jika suatu berkas sinar PQ datang pada salah satu sisi prisma yang sudut pembiasnya β, maka oleh prisma sinar ini dibiaskan mendekati garis normal menjadi sinar QR, kemudian sinar keluar lagi dari sisi prisma yang lain menjadi sinar RS dibiaskan menjauhi garis normal. Dari lukisan jalannya sinar di atas, ternyata sinar datang PQ dengan sinar keluar RS, perpotongan perpanjangan kedua sinar tersebut membentuk sudut yang disebut sudut deviasi. Nah, berdasarkan lukisan di atas, kita dapat menurunkan rumus untuk menghitung besar sudut pembias prisma β dan sudut deviasi δ. Caranya adalah sebagai berikut. Menentukan Rumus Sudut Pembias Prisma Perhatikan QRT. ∠TRQ = r2 – i2 dan ∠TQR = i1 – r1 ∠QTR = 180° − ∠TQR − ∠TRQ Perhatikan BQR. ∠BQR = 90° − r1 ∠BRQ = 90° − i2 ∠QBR = 180° − ∠BQR − ∠BRQ ⇒ ∠QBR = 180° − 90° − r1 – 90° − i2 ⇒ ∠QBR = 180° − 90° − r1 – 90° − i2 ⇒ ∠QBR = r1 + i2 Karena ∠QBR = β, maka rumus untuk menentukan besar sudut pembias prisma adalah sebagai berikut. Keterangan β = sudut pembias prisma r1 = sudut bias dari sinar masuk i2 = sudut datang sinar keluar Menentukan Rumus Sudut Deviasi Perhatikan QTR. ∠QTR + ∠TRQ + ∠TQR = 180° maka ∠QTR = 180° − ∠TRQ + ∠TQR Karena ∠QTR dan δ saling berpelurus, maka ∠QTR + δ = 180° δ = 180° − ∠QTR ⇒ δ = 180° − [180° − ∠TRQ + ∠TQR] ⇒ δ = ∠TRQ + ∠TQR ⇒ δ = r2 – i2 + i1 – r1 ⇒ δ = i1 + r2 − r1 − i2 ⇒ δ = i1 + r2 – r1 + i2 Karena r1 + i2 = β, maka δ = i1 + r2 – β Dengan demikian, rumus untuk menghitung besar sudut deviasi cahaya pada pembiasan prisma adalah sebagai berikut. Keterangan δ = sudut deviasi i1 = sudut datang sinar masuk r2 = sudut bias dari sinar keluar β = sudut pembias prisma Agar kalian lebih paham mengenai penggunaan rumus sudut pembias prisma dan rumus sudut deviasi dalam peristiwa pembiasan cahaya pada prisma optik, perhatikan contoh soal dan pembahasannya berikut ini. Contoh Soal Sebuah prisma terbuat dari kaca indeks bias kaca = 1,5 memiliki sudut pembias 60°. Jika seberkas sinar laser jatuh pada salah satu permukaan prisma dengan sudut datang 30°, berapakah sudut deviasi yang dialami oleh sinar laser tersebut setelah melewati prisma? Penyelesaian Diketahui i1 = 30° nudara = 1 nkaca = 1,5 β = 60° Ditanyakan sudut deviasi δ Jawab Sudut deviasi dicari dengan menggunakan persamaan δ = i1 + r2 – β Oleh karena i1 dan β sudah diketahui, nilai r2 sudut bias kedua perlu ditentukan terlebih dahulu. Sebelum dapat menentukan r2, kita perlu mencari nilai dari r1 dan i2 terlebih dahulu. Menentukan r1 Pada permukaan pembias pertama, berlaku Persamaan Snellius sebagai berikut. n1 sin i1 = n2 sin r1 sin i1 = n2 dengan n1 = nudara dan n2 = nkaca sin r1 n1 sin r1 = 0,33 r1 = arc sin 0,33 r1 = 19,47° Menentukan i2 Nilai i2 ditentukan dengan menggunakan rumus sudut pembias prisma sebagai berikut. β = r1 + i2 Sehingga i2 = β – r1 i2 = 60° − 19,47° i2 = 40,53° Menentukan r2 Pada permukaan pembias kedua, berlaku Persamaan Snellius sebagai berikut. n1 sin i2 = n2 sin r2 sin i2 = n2 dengan n1 = nkaca dan n2 = nudara sin r2 n1 sin 40,53° = 1 sin r2 1,5 sin r2 = 0,65 × 1,5 sin r2 = 0,98 r2 = arc sin 0,98 r2 = 78,5° Jadi, sudut deviasi yang dialami cahaya ketika melewati perisma kaca tersebut sebesar δ = i1 + r2 – β δ = 30° + 78,5° – 60° δ = 48,5°

Adapunprinsip jalannya sinar yang mengenai prisma adalah sebagai berikut : 1. Cahaya datang dari udara menuju bidang permukaan prisma, 2. kemudian, cahaya tersebut akan dibiaskan mendekati garis normal, 3. Ketika cahaya akan meninggalkan prisma menuju ke udara, maka cahaya tersebut akan dibiaskan kembali menjauhi garis normal.
You are here Home / rumus fisika / Pembiasan Cahaya pada Prisma + SoalPembiasan Cahaya pada Prisma – Apa itu prisma? Dalam optik fisika ada yang namanya prisma. Ia adalah salah satu alat optik berupa benda transparan bening terbuat dari bahan gelas atau kaca yang dibatasi oleh dua bidang permukaan yang membentuk sudut tertentu. Sudut diantara dua bidang tersebut disebut sudut pembias sedangkan dua bidang pembatas disebut bidang pembias. Alat optik prisma digunakan untuk analisis pembiasan, pemisahan, maupun pemantulan cahaya. Benda optik ini dapat memisahkan cahaya putih menjadi cahaya warna-warni warna pelangi yang menyusunnya yang sering disebut dengan spektrum. Prisma banyak digunakan dalam instrumen stereoskopik dengan memanfaatkan pembiasan cahaya pada prisma untuk memberikan efek tiga dimensi dalam visualisasi grafis. Saat di SMA sobat pasti pernah melakukan percobaan pembiasan cahaya pada prisma. Dalam praktikum tersebut biasanya sobat diminta menentukan berapakah sudut deviasi dan indeks bias prisma. Berikut rangkuman yang rumushitung buat semoga bisa membantu pemahaman sobat sehingga tidak akaan kesulitan ketika praktikum maupun mengerjakan soal pembiasan cahaya pada prisma. Pembiasan Cahaya pada Prisma Jalannya sinar pada peristiwa pembiasan cahaya pada prisma ditunjukkan oleh gambar berikut θ1 adalah sudut datang pertama θ2 adalah sudut bias pertama θ3 adalah sudut datang kedua θ4 sudut bias terakhir β sudut pembias prisma δ delta adalah sudut deviasi yang dimaksud sudut deviasi adalah sudut yang dibentuk oleh perpanjangan cahaya yang masuk pada prisma dengan cahaya yang meninggalkan prisma. Pada setiap deviasi berlaku rumus θ2 + θ3 = βθ1 + θ4 = δ + β Deviasi Minimum δ min Deviasi mimimum dicapai apabila sudut datang pertama sama dengan sudut bias akhir yaitu θ1 = θ4 sehingga dari rumus diatas berlaku persamaan rumus deviasi minimum θ1 = θ4 ⇒ 2θ1 = 2θ4 = δmin + β karena θ1 = θ4 maka θ2 + θ3 = 2θ2 = 2θ3 = β jika indes bias prima = np dan indeks bias medium udara = nm berlaku rumus jika β ≤ 10o, maka berlaku Contoh Soal Pembiasan Cahaya pada Prima 1. Sebuah prisma kaca berada di ruangan terbuka. Para prisma itu datang seberkas sindar dengan sudut datan 45o dan sudut pembias prisma 60o. Jika terjadi deviasi minimum, berapa indeks bias prima tersebut? Pembahasan Diketahui θ1 = 45o β = 60o Ditanyakan berapakah indeks bias prisma np? pada deviasi minimum berlaku 2θ1 = δmin + β δmin = 2θ1 – β δmin = 245o – 60o δmin = 30o setelah menemukan sudut deviasi minimu kita dapat mencari indeks bias prisma dengan persamaan karena prisma berada di ruangan terbuka maka indeks bias medium nm sama dengan indeks bias udara =1 sin 1/2 60o+30o = np/1. sin 1/ sin 45 = np/1 sin 30 np = sin 45o / sin 30o np = 0,5√2 / 0,5 = √2 Demikian tadi sobat, sedikit rangkuman tentang pembiasan cahaya pada prisma berikut rumusnya. Semoga bisa membantu belajar. Semangat. 😀 Reader Interactions

Iniadalah benar bahwa pelangi berbentuk lingkaran, bukan parabola seperti anggapan beberapa orang. Di tanah, kita hanya melihat maksimal pelangi setengah lingkaran. Pelangi terbentuk karena pembiasan sinar matahari oleh tetesan air yang ada di atmosfir. Ketika sinar matahari melalui tetesan air, cahaya tersebut dibengkokkan sedemikian rupa

Salah satu percobaan terpenting dalam fisika terjadi di sebuah kamar gelap di Cambridge, Inggris, pada sekitar tahun 1665. Fisikawan, Isaac Newton, melewatkan berkas sinar matahari menembus sebuah lubang di tirai dan menyinarkannya ke sebuah prisma kaca. Ia terkejut, pita-pita sejajar warna pelangi tampak di tembok di sebalik prisma. Dari pengamatan ini, Newton menyimpulkan bahwa sinar matahari terdiri atas campuran warna yang telah dipisahkan oleh prisma. Ketika ia memilih hanya satu warna dan menyinarkannya melalui prisma kedua, tidak terjadi perubahan lebih lanjut Clark, 2009. Fisika modern dapat dengan mudah menjelaskan apa yang terjadi pada kamar Newton. Cahaya putih tersusun atas campuran warna pelangi, dari warna merah hingga ungu dengan keseluruhan warna lain diantaranya. Saat memasuki prisma, setiap warna dibiaskan dibelokkan. Namun cahaya merah tidak dibelokkan sejauh cahaya ungu. Akibatnya, cahaya merah dan ungu keluar dari prisma pada sudut yang berbeda dan warna-warna di antaranya muncul di antara kedua sudut warrna-warna itu. Ini berpengaruh pada penyebaran warna penyusun cahaya putih menjadi sebuah spektrum. Warna-warna tersebut adalah merah, jingga, kuning, hijau, biru, nila, dan ungu Clark, 2009. Jenis pembiasan khusus oleh prisma dikenal sebagai dispersi. Dan berbagai warna yang dihasilkan disebut spektrum. Ini menjelaskan warna-warna yang kadang terlihat ketika sinar matahari menyinari gelas kristal atau fiting lampu hias. Ini juga menjelaskan pembentukan pelangi Clark, 2009. Peristiwa penguraian gelombang dispersi akan terjadi pada saat kumpulan gelombang dengan laju yang sama merambat dalam suatu medium sampai pada suatu bidang batas sehingga masing-masing gelombang mengalami pembiasan dengan laju yang berbeda-beda indeks bias yang berbeda. Sehingga kumpulan gelombang tersebut akan diuraikan menjadi gelombang masing-masing. Dengan demikian, jika kita merambatkan satu kelompok gelombang dalam suatu medium, maka pada saat kelompok gelombang itu sampai pada bidang batas kelompok gelombang sesuai dengan arah rambat gelombang bias Suroso, 2002. Dari uraian di atas, dapat dikatakan bahwa indeks bias merupakan fungsi panjang gelombang. Oleh karena itu hukum pembiasan Snell menunjukkan bahwa cahaya dengan berbagai panjang gelombang yang berbeda dibelokkan pada berbagai sudut yang berbeda saat datang mengenai suatu bahan refraktif. Nilai indeks bias umumnya menurun seiring bertambahnya panjang gelombang. Hal ini berarti bahwa cahaya ungu membelok lebih besar dibandingkan cahaya merah saat merambat dalam suatu bahan refraktif. Seberkas sinar cahaya dengan panjang gelombang tunggal yang datang pada prisma dari sebelah kiri keluar dibiaskan dari arah rambat awalnya oleh sudut δ yang disebut sudut deviasi Serway dan Jewwet, 2010. Secara matematis indeks bias n prisma adalah 1 Dengan sebagai sudut pembias prisma, dan adalah sudut deviasi minimum. Sudut deviasi adalah sudut antara perpanjangan sinar datang dengan perpanjangan sinar-sinar bias pada sisi kanan prisma. Sedangkan sudut deviasi minimum sudut terkecil yang dapat dihasilkan dengan mengubah sudut datang. Deviasi minimum terjadi jika sinar melalui prisma secara simetris. Berdasarkan persamaan 1 di atas, maka untuk spektrum warna merah, kuning dan biru dapat diturunkan persamaan indeks bias bahan prisma untuk berbagai panjang gelombang yaitu 2 Sedangkan daya dispersi bahan prisma yaitu 3 Percobaan atau eksperimen untuk membuktikan sifat pembiasan dan dispersi cahaya oleh prisma dapat diketahui dengan menggunakan alat ukur sudut dengan teropong yang disebut spektrometer. Untuk itu, sebelum anda melakukan percobaan untuk mengungkapkan karakteristik prisma, maka terlebih dahulu anda harus mengetahui cara menggunakan dan membaca skala pada spektrometer. Susunan spektrometer dan komponen komponennya diperlihatkan seperti gambar di bawah ini. Gambar 1. Susunan spektrometer dan komponen-komponennya Secara umum, komponen spektrometer oprik yang harus diketahui dalam melakukan eksperimen pengukuran dispersi dan pembiasan cahaya oleh prisma adalah sebagai berikut 1. Kolimator Kolimator merupakan tabung yang dilengkapi dengan sebuah lensa yang berhadapan dengan prisma, dan sebuah celah yang dapat diatur-atur lebarnya yang berhadapan dengan sumber cahaya. 2. Teleskop Teleskop ini berfungsi untuk menentukan posisi benang silang maupun spectrum warna. Teleskop dilengkapi sebuah lensa obyektif yang menghadap langsung dengan meja prisma, dan sebuah lensa okuler yang dapat ditarik atau didorong. Teleskop ini juga dapat diputar ke kiri maupun ke kanan. Teleskop bagian bawahnya dilengkapi dengan skala derajat yang dapat dibaca pada skala S1 atau S2 ada dua tempat untuk membaca skala. Skala yang berputarbersama teleskop dan mengitari lempengan skala utama disebut skala nonius. 3. Meja spektrometer Meja ini berfungsi untuk menempatkan prisma. Meja ini dapat berputar dan memiliki kunci sudut pembias prisma Herman, 2015. 4. Busur Derajat Busur derajat pada komponen spektrometer optik pada dasarnya berbentuk lingkaran terletak di bawah meja optik prisma. Busur ini bertujuan untuk dapat mengetahui sudut bias ataupun sudut dispersi ketika melakukan pengukuran bias cahaya maupun dalam menentukan daya dispersi yang dihasilkan oleh prisma. Demikian artikel tentang Teori Singkat Prisma semoga bermanfaat bagi pembaca baik itu kalangan akademisi yang menggeluti bidang ilmu fisika ataupun kalangan masyarakat umum untuk menambah wawasan akan bidang ilmu lain. Sumber Referensi Clark, John O. 2009. Materi Fisika! Volume 4 CAHAYA. Bandung PT. Intan Sejati. Herman dan Asisten LFD. 2015. Penuntun Praktikum Fisika Dasar 2. Makassar Universitas Negeri Makassar. Serway, Raymond A. dan John W. Jewett. 2010. Fisika—untuk Sains dan Teknik Buku 2 Edisi 6. Jakarta Salemba Teknika. Suroso. 2002. Ensiklopedi Sains dan Kehidupan. Jakarta CV. Tarity Samudera Berlian

Beberaparatus cahaya tersebut dapat terlihat pada layar jika cahaya putih tersebut direfleksikan dan terjadi perubahan arah sinar. Warna yang dihasilkan tergantung perubahan sudut refleksinya, jadi jika sudut refleksi berbeda, maka beda pula output warna/gambar yang ditampilkan. Karena itulah ada istilah Response Time di LCD. Response Time
Ketika kalian memasukkan sebagian pensil atau sedotan ke dalam gelas yang berisi air jernih, pensil atau sedotan tersebut seolah-olah membengkok pada titik batas udara dan air. Mengapa hal ini bisa terjadi? Tentunya kalian sudah mempelajari materi tentang sifat-sifat cahaya bukan? Ketika cahaya mengenai benda yang tidak tembus cahaya bukan benda bening maka cahaya tersebut akan dipancarkan kembali ke arah tertentu baik secara teratur maupun tidak teratur. Peristiwa ini kemudian dikenal sebagai pemantulan cahaya. Apabila cahaya mengenai benda yang tembus cahaya benda bening seperti air atau kaca, maka arah rambat cahaya akan dibelokkan ke arah tertentu. Peristiwa ini kemudian dikenal sebagai pembiasan cahaya atau refraksi. Lalu tahukah kalian apa itu pembiasan cahaya? Dan apa saja contoh fenomena pembiasan cahaya yang dapat kita temukan dalam kehidupan sehari-hari? Untuk menjawab pertanyaan tersebut, silahkan kalian simak penjelasan berikut ini. Pengertian Pembiasan Cahaya Sebagai gelombang elektromagnetik, cahaya akan dipantulkan atau dibiaskan saat melewati bidang batas antara dua medium. Ketika cahaya dari udara melewati bidang batas antara air dan udara, maka sebagian kecil dari cahaya akan dipantulkan dan sisanya akan diteruskan. Karena terdapat perbedaan kerapatan optik antara udara dan air, maka arah berkas cahaya yang datang dari udara tidak akan sama dengan arah berkas cahaya di dalam air. Karena hal tersebut, maka cahaya akan dibelokkan. Peristiwa ini disebut dengan pembiasan cahaya. Dengan demikian, dapat disimpulkan bahwa Pembiasan atau difraksi cahaya adalah adalah peristiwa pembelokan arah cahaya ketika melewati bidang batas antara dua medium yang berbeda kerapatan optiknya. Pembiasan cahaya terjadi akibat kecapatan cahaya berbeda pada setiap medium. Ada dua syarat terjadinya proses pembiasan cahaya, yaitu Cahaya merambat melalui dua medium yang memiliki perbedaan kerapatan optik, misalnya udara dengan air, udara dengan kaca, air dengan kaca, dan sebagainya. Cahaya yang datang harus miring pada batas dua medium, karena jika tegak lurus maka tidak akan mengalami proses pembiasan. Cahaya yang datang dari medium lebih rapat menuju medium kurang rapat ex. kaca ke udara harus menghasilkan sudut bias lebih kecil dari 90°. Hal ini karena jika sinar bias sama dengan 90° maka cahaya tidak akan memasuki medium kedua. Sedangkan jika sudut bias lebih besar dari 90° maka akan terjadi peristiwa pemantulan sempurna. Yang dimaksud dengan kerapatan optik di sini adalah sifat dari medium tembus cahaya zat optik dalam melewatkan cahaya. Kerapatan optik yang berbeda pada dua medium akan menyebabkan cepat rambat cahaya pada kedua medium tersebut berbeda. Perbadingan antara cepat rambat cahaya pada medium 1 dan medium 2 disebut indeks bias. Jika medium 1 adalah ruang hampa, maka perbandingan antara cepat rambat cahaya di ruang hampa dan di sebuah medium disebut indeks bias mutlak medium tersebut. Secara matematis, rumus indeks bias mutlak dituliskan sebagai berikut. Dengan n = indeks bias mutlak medium c = cepat rambat cahaya di ruang hampa 3 × 108 m/s v = cepat rambat cahaya pada medium. Baca Pengertian, Macam-Macam dan Rumus Indeks Bias serta Contoh Soal dan Pembahasan Berikut ini adalah beberapa contoh indeks bias mutlak beberapa medium yang disajikan dalam bentuk tabel. Tabel Indeks Bias Mutlak Berbagai Medium Medium Indeks Bias Ruang hampa 1,0000 Udara 1,0003 Air 1,3300 Gliserin 1,4700 Kaca kerona 1,5200 Kristal kuarsa 1,5400 Kaca flinta 1,6200 Batu nilam 1,7600 Intan 2,4200 Cara Menggambarkan Arah Pembiasan Cahaya Peristiwa pembiasan cahaya dapat digambarkan dalam bentuk diagram. Misalnya, kita akan melukiskan proses pembiasan cahaya dari medium udara ke medium air. Sebelum membuat diagramnya, kita tentukan dahulu perbandingan indeks bias mutlak antara medium udara dengan medium air, yaitu sebagai berikut. Indeks bias udara = 1 Indeks bias air = 1,33 = 133/100 = 11/3 = 4/3 Dengan demikian, perbandingan indeks bias udara dan air adalah n udara n air 1 4/3 3 4 Langkah-langkah melukiskan diagram arah pembiasan cahaya adalah sebagai berikut. Langkah pertama, Gambar garis yang mewakili bidang batas, misalnya garis XY. Kemudian gambar garis yang mewakili garis normal yang tegak lurus dengan garis bidang batas, misalnya garis AB. Kemudian titik potong kedua garis tersebut kita beri nama titik O seperti yang ditunjukkan pada gambar berikut. Langkah kedua, gambarkan dua buah lingkaran dengan titik pusat O dengan perbandingan jari-jari 3 4 sesuai dengan perbandingan indeks bias medium seperti yang diperlihatkan pada gambar di bawah ini. Langkah ketiga, Gambarkan sinar datang P dengan sudut datang i, misalnya 30°. Kemudian teruskan sinar PO hingga memotong lingkaran kecil di titik Q. Lalu tarik garis putus-putus dari titik Q sejajar dengan garis normal AB hingga memotong lingkaran besar di titik R seperti yang diperlihatkan pada gambar berikut ini. Langkah keempat, langkah terakhir adalah hubungkan titik O dan titik R dengan sebuah garis lurus. Garis lurus OR inilah yang menunjukkan sinar bias, di mana sudut yang dibentuk antara garis OR dengan garis normal AB merupakan sudut bias r seperti yang diperlihatkan pada gambar di bawah ini. Dari gambar terakhir ini nampak bahwa sinar yang datang dari medium kurang rapat udara menuju medium lebih rapat air dibelokkan mendekati garis normal. Lalu bagaimana jika sinar cahaya datang dari medium yang lebih rapat menuju ke medium kurang rapat? Sinar yang datang dari medium lebih rapat ke medium kurang rapat, misalnya dari kaca menuju air, akan dibiaskan menjauhi garis normal. Jika sinar datang yang mengenai suatu medium kurang rapat menghasilkan sinar bias dengan sudut 90°, berarti sinar bias bergerak sepanjang bidang batas dan tidak memasuki medium kedua. Sudut ini disebut sudut kritis. Perhatikan gambar berikut. Prinsip jalannya sinar dari satu medium ke medium lain pada pembiasan sama dengan pemantulan. Jadi, Hukum pembiasan cahaya dapat dituliskan sebagai berikut. Sinar datang, sinar bias, dan garis normal terletak pada satu bidang datar dan ketiganya berpotongan di satu titik. Sinar datang dari medium kurang rapat menuju medium lebih rapat dibiaskan mendekati garis normal. Sinar datang dari medium lebih rapat menuju medium kurang rapat dibiaskan menjauhi garis normal. Sinar datang tegak lurus batas dua medium, tidak dibiaskan melainkan diteruskan. Contoh Fenomena Pembiasan Cahaya dalam Kehidupan Sehari-hari 1. Sedotan yang tercelup air sebagian tampak membengkok Sedotan atau pensil yang sebagian batangnya tercelup di dalam air akan tampak bengkok jika dilihat dari luar. Hal ini disebabkan cahaya datang dari udara kurang rapat menuju air lebih rapat akan dibiaskan menjauhi garis normal. proses pembiasan cahaya berlangsung di dalam gelas. Sehingga jika dilihat dari luar gelas, batang sedotan tampak bengkok karena tidak berada di titik sebenarnya garis normal. Selain sedotan batang pensil, pulpen, spidol yang dimasukkan ke dalam gelas berisi air juga akan terlihat bengkok jika dilihat dari luar gelas. 2. Dasar kolam tampak dangkal Dasar kolam akan terlihat dangkal jika dilihat dari darat. Hal ini disebabkan cahaya datang dari udara kurang rapat menuju air lebih rapat akan dibiaskan menjauhi garis normal. Proses pembiasan cahaya berlangsung di dalam yang terlihat sebagai dasar kolam merupakan bayangan dasar kolam bukan sasar kolam yang sesungguhnya. 3. Berlian dan intan tampak berkilauan Cahaya yang masuk ke dalam intan maupun berlian mengalami beberapa kali proses pembiasan oleh permukaan intan maupun permukaan berlian tersebut. Hal ini disebabkan indeks bias intan yang besar yaitu dan sudut kritis intan kecil hanya 24°. 4. Bintang terlihat lebih dekat dari posisi sebenarnya Pada malam hari yang cerah kita dapat melihat ribuan bintang yang menghiasi langit. Bintang yang terlihat tampak lebih dekat dari bumi dari posisi sebenarnya. Hal ini disebabkan cahaya datang dari ruang hampa udara di ruang angkasa kurang rapat menuju atmosfer bumi lebih rapat akan dibiaskan mendekati garis normal. Proses pembiasan cahaya berlangsung di atmosfer bintang di langit akan terlihat lebih dekat dari posisi sebenarnya jika dilihat dari bumi. 5. Terjadinya pelangi Jika hujan turun disertai panas biasanya akan terlihat pelangi. Terjadinya pelangi disebabkan dispersi cahaya matahari yang bersifat polikromatik menjadi cahaya monokromatik dibiaskan oleh tetesan air. Proses pembiasan ini berlangsung di dalam atmosfer. Cahaya matahari yang dibiaskan oleh tetesan air menyebabkan warna-warna cahaya matahari menjadi terpisah. Masing – masing warna dibiaskan dengan sudut bias yang berbeda sehingga masing – masing warna akan terpisah. Cahaya merah pertama dibiaskan karena frekuensi cahaya merah paling rendah dan memilki panjang gelombang paling besar di antara ketujuh warna pelangi. Sedangkan cahaya ungu menjadi yang terakhir dibiaskan karena frekuensi cahaya ungu paling tinggi dan gelombang cahaya ungu paling pendek. Pelangi biasanya terlihat pada pagi dan sore hari karena sudut antara bumi dan matahari masih rendah. Pelangi hanya akan terlihat jika posisi pengamat berada di belakang hujan dan matahari berada di belakang pengamat.
DanContohnya Pemantulan Pembiasan Teori Gelombang Elektrodinamika Hamburan Cahaya''jelaskan pengertian proses Pemantulan refleksi Pembiasan April 5th, 2018 - jelaskan pengertian Dispersi adalah peristiwa penguraian sinar cahaya yang merupakan campuran beberapa panjang Apabila suatu gelombang memiliki sifat''sifat sifat gelombang cahaya ilmu
Jalannya sinar pada peristiwa pembiasan cahaya mengikuti Hukum pembiasan Snellius sebagai berikut. - Sinar datang, sinar bias, dan garis normal terletak pada satu bidang datar. - Sinar yang datang tegak lurus bidang batas akan diteruskan tanpa dibelokkan. - Sinar datang dari medium kurang rapat ke medium lebih rapat dibiaskan mendekati garis normal. Sebaliknya, sinar datang dari medium lebih rapat ke medium kurang rapat dibiaskan menjauhi garis normal. Dilihat dari pilihan jawaban yang ada - Kaca lebih rapat daripada air. - Air lebih rapat daripada udara. - Es lebih rapat daripada udara. Jadi, jawaban yang tepat adalah C.
6 Sinar yang jatuh pada permukaan benda yang datar, halus, dan mengkilap, maka terjadi . a. pemantulan difus c. pemantulan teratur b. pemantulan baur d. pemantulan balik 7. Bayangan yang dapat kita lihat dalam cermin tetapi tidak dapat ditangkap oleh layar disebut . a. bayang semu c. bayangan sejati b. bayangan nyata d. bayangan pantulan 8. Menyajikan beberapa informasi Otomotif, Bank, Tutorial, Kerajinan . semoga dapat membantu anda untuk belajar dan menuntut Ilmu serta menambah wawasan anda. Proses Terjadinya Pembiasan Cahaya Pada PrismaPrisma adalah zat bening yang dibatasi oleh dua bidang datar. Apabila seberkas sinar datang pada salah satu bidang prisma yang kemudian disebut sebagai bidang pembias I, akan dibiaskan mendekati garis normal. Sampai pada bidang pembias II, berkas sinar tersebut akan dibiaskan menjauhi garis normal. Pada bidang pembias I, sinar dibiaskan mendekati garis normal, sebab sinar datang dari zat optik kurang rapat ke zat optik lebih rapat yaitu dari udara ke kaca. Sebaliknya pada bidang pembias II, sinar dibiaskan menjahui garis normal, sebab sinar datang dari zat optik rapat ke zat optik kurang rapat yaitu dari kaca ke udara. Sehingga seberkas sinar yang melewati sebuah prisma akan mengalami pembelokan arah dari arah semula. Gambar 3 menunjukkan pembiasan cahaya pada prisma. Gambar 3. Pembiasan cahaya pada prisma Refraktometer memiliki beberapa bagian penting diantaranya prisma, lensa, bimetal strips, dan pemutar skala. Bagian- bagian dari refraktometer Day light plate kaca Day light plate berfungsi untuk melindungi prisma dari goresan akibat debu, benda asing, atau untuk mencegah agar sampel yang diteteskan pada prisma tidak menetes atau jatuh. Prisma biru Prisma merupakan bagian yang paling sensitif terhadap goresan. Prisma berfungsi untuk pembacaan skala dari zat terlarut dan mengubah cahaya polikromatis cahaya lampu/matahari menjadi monokromatis Knop pengatur skala Knop pengatur skala berfungsi untuk mengkalibrasi skala menggunakan aquades. Cara kerjanya ialah knop diputar searah atau berlawanan arah jarum jam hingga didapatkan skala paling kecil untuk refraktometer salinitas, untuk refraktometer urine. Lensa Lensa berfungsi untuk memfokuskan cahaya yang monokromatis. Handle Handle berfungsi untuk memegang alat refraktometer dan menjaga suhu agar stabil Bimatal strip Bimetal strip terletak pada bagian dalam alat tidak terlihat dan berfungsi untuk mengatur suhu sekitar 18 – 28 OC. Jika saat pengukuran suhunya mencapai kurang dari 18 OC atau melebihi 28 OC maka secara otomatis refraktometer akan mengatur suhunya agar sesuai dengan range yaitu 18 – 28 OC. Lensa pembesar Sesuai dengan namanya, lensa pembesar berfungsi untuk memperbesar skala yang terlihat pada eye piece. Eye piece Eye piece merupakan tempat untuk melihat skala yang ditunjukkan oleh refraktometer. Skala Skala berguna untuk melihat , konsentrasi, dan massa jenis suatu larutan. ; Jelaskan Proses Terjadinya Pembiasan Cahaya Pada Prisma? 5 tati Friday, April 17, 2015 Proses Terjadinya Pembiasan Cahaya Pada Prisma Prisma adalah zat bening yang dibatasi oleh dua bidang datar. Apabila seberkas sinar datang p…semoga informasi bermanfaat dan dapat membantu is a website that provides useful information, please share if there is interesting information that can help you. Thank you .
  • 6bwck65672.pages.dev/40
  • 6bwck65672.pages.dev/680
  • 6bwck65672.pages.dev/248
  • 6bwck65672.pages.dev/383
  • 6bwck65672.pages.dev/388
  • 6bwck65672.pages.dev/183
  • 6bwck65672.pages.dev/848
  • 6bwck65672.pages.dev/274
  • 6bwck65672.pages.dev/896
  • 6bwck65672.pages.dev/897
  • 6bwck65672.pages.dev/627
  • 6bwck65672.pages.dev/151
  • 6bwck65672.pages.dev/474
  • 6bwck65672.pages.dev/809
  • 6bwck65672.pages.dev/229
  • arah pembiasan sinar pada prisma yang benar adalah